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Abstract

The purpose of this theoretical work is to present a general bending—extensional model of the response of a simply
supported laminated beam to excitation by a nonsymmetric actuator made using piezoelectric elements. The edge
delamination is modeled by changing the effective length of debonded actuator. Dynamic equations, joint conditions
between sections with and without active layers as well as the boundary conditions at the two ends of the beam form a
boundary value problem. The dynamic strain response to the excitation by the applied voltage term is determined from
the solution of this boundary value problem. The dynamic extensional strain on the beam surface is calculated by
including the free stress conditions at the piezoelectric actuator boundaries, by considering the dynamic coupling be-
tween the actuator and the beam, and by taking into account a finite bonding layer with the finite stiffness. The analysis
indicates that the edge delamination has a harmful effect on the performance of piezoactuators, but the significant
decrease of natural frequencies with an increase in delamination length is not observed. The influence of the dela-
mination length on the system transfer functions (the beam surface strain, the beam transverse displacement and the
shear stresses in bonding layers) is shown. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials show great advantages as actuators in intelligent structures, i.e., structures with
highly distributed actuators, sensors, and processor networks. Piezoelectric sensors and actuators have been
applied successfully in the closed loop control (Bailey and Hubbard, 1985; Newman, 1991). The beam
vibration due to the excitation of a piezoelectric actuator has been modeled by Crawley and de Luis (1987)
and Jie Pan et al. (1991). In particular, Crawley and de Luis presented a comprehensive static model for a
piezoelectric actuator glued to a beam. The relationship between static structural strains, both in the
structure and in the actuator, and the applied voltage across the piezoelectric was presented. This static
approach was then used to predict the dynamic behavior. As the shear modulus of bonding layers increases
or the thickness of bonding layers decreases the shear lag becomes less significant and the shear stresses are
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transferred from actuators to the beam over small regions close to the piezoelectric ends. For the perfectly
bonding layers, the tangential stress distribution is described by the two Dirac-delta functions located at the
piezoelement ends. High shear stresses can cause a crack initiation and propagations in bonding layer,
delamination or even total debonding of piezoelectric element. A dynamic model for a simply supported
beam with a piezoelectric actuator glued to each of its upper and lower surfaces was developed by Jie Pan
et al. (1991). In their model, the actuators were assumed to be perfectly bonded. This means that the
bonding layer is sufficiently thin so that the shear of layer can be neglected. The effect of through-width
delamination on the vibration characteristics of laminated beams without piezoactuators was studied by
Mujumdar and Suryanarayan (1988). The influence of composite plate delamination on buckling of the
debonded layers was discussed by Jiang and Bao (1996). Analysis performed by Bogdanovich and Rastogi
(1996) shows that complete and accurate solving of bonded plates can be only obtained in 3-D elasticity
formulation and numerical solutions. Kim and Jones (1992) investigated the effect of delamination on the
performance of piezoactuators which are surface mounted on a cantilever beam assuming a pure bending
model and the mass per unit area of the piezoelement and the beam equal to one. They show that the edge
delamination significantly decreases the coupling performance of piezoactuators.

In the present paper, a bending—extensional dynamic model of the beam-bonding layer-actuators system,
is proposed. The pure extensional strain in the piezoelectric elements and the massless bonding layers are
assumed. The dynamic extensional strain on the beam surface is calculated by including the free stress
conditions at the piezoelectric actuator boundaries, by considering the dynamic coupling between the
actuator and the beam, and by taking into account a finite bonding layer with the finite stiffness. The
approach has been used (Tylikowski, 1993) to derive a control strategy especially useful in collocated
sensor—actuator systems. The used dynamic equations can be reduced to the particular cases from past
studies, which were based on the assumption of static coupling between the actuator and the beam or
assuming the perfect bonding in dynamical analysis.

2. Analysis

Consider the elastic beam with the identical piezoelectric layers mounted on each of two opposite sides.
Fig. 1 shows an edge delamination of the lower piezoactuator. For simplicity, it is also assumed that the gap
width extends uniformly across the beam (Kim and Jones, 1992). The analysis will use the Bernoulli-Euler
theory to describe a beam motion. The beam is assumed to be simply supported. Due to the geometry, the
beam is divided into four parts as shown in Fig. 1, and the dynamic behavior of each part is described by
different equations. The motion is described by the beam transverse displacement w due to bending and the
pure longitudinal displacements u,, and u, of upper and lower piezoelectric actuators, respectively. The
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Fig. 1. Beam with partially debonded piezoelectric layers.
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poling directions in both actuators are the same. The actuators are driven by a pair of electrical fields v with
the same amplitude and in opposite phase.

The inertia forces of finite-thickness bonding layers are neglected and the pure one-dimensional shear in
the bonding layer is assumed.

Consider an infinite element of beam and upper and lower actuators in the second section x; < x < x,
shown in Fig. 2. The thickness of beam, bonding layer and piezoelectric actuator is denoted by #,, #; and .,
respectively.

The beam dynamics equations are as follows:

T, — pitybw, =0, (1)

M, —T+bt(t"+17) =0, (2)

5 X

where py = p, (1 + 2(ppetpe/Pptv)) is the equivalent beam density, and the subscript comma denotes partial
differentiation with respect to the variable after the comma.
Under the assumption of pure extensional strains in the piezoelectric elements their dynamic equations

expressed by longitudinal strains €" = u;, , € =u_ are

ppctpeej, — Epetpeefm + rfx =0, (3)

Ppelpe€y — Epetpe€ o + 7. = 0. 4)

For the massless bonding layers, isotropic stress—strain relations are
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Fig. 2. Geometry of the beam in the second section.
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o =2 (- ), 5)
-G,
T = [—(Mb — upe)7 <6)

where Ey,, is Young’s modulus of beam, E,., Young’s modulus of the piezoactuator, G, Kirchoff’s modulus

of bonding layer. The geometric relation on the beam surface leads to
2 2

Wy = — —Upy = ——€p. 7

" ty > ty b ( )

The bending moment M generated by the distributed normal stresses over the beam cross-section is

equal to
b Eytth

M—?O'b = 6 €ph. (8)

Eliminating displacements w, u,,, u,., inner forces and shear stresses T+, t~ we can write beam surface

and piezoelectric strains dynamic equations (2) and (4) for Section 2 in the following form:

G
Ppetpe€ly — Epelpe€fy + - (" —e)=0, x¢€(x,x), 9)
S
+ ., G -
ppetpe?;; - Epetpeﬁxx + I_ (ﬁb — € ) = Oa X € (xlax2>7 (10)
‘ Eut Gt
Pr€vu + %Eb’xxxx + 4—: (etcx — €~ 2€p0) =0, x € (x1,x2). (11)

In the third section x, < x < x3 shown in Fig. 3, the moment equation has a modified form due to the
lack of shear between the beam and the lower actuator

My—T+—1 =0. (12)

Finally, we obtain two coupled partial differential equations in the third section of the form

G

ppetpeejt — Epetpe€’, + - (et —e) =0, xe€ (x,x3), (13)
Ent? Gt

Pzeb,n + % €b, xxxx + 4_tb (6?;)( - 6b,xx) = 07 X € (x27x3)' (14)

The motion of the beam in the first and fourth sections is described by the classical Bernoulli-Euler
equation, which can be obtained by neglecting the third term in Eq. (14).

2
Pp€pbu —+ ﬁeb,xxxx = 0, X € (O,xl) U (X3,€). (15)
The stress—strain relationship for the piezoelectric material has the form
Tpe = Epe(Upe,x — 4), (16)

where the piezoelectric strain, the piezoelectric constant, and the applied voltage are denoted by A =
d31V/tpe, ds1 and v, respectively.
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Fig. 3. Geometry of the beam in the third section (one-sided delamination region).

3. Boundary and joint conditions

We assume simply supported boundary conditions imposed on the solution of Eq. (15) at x =0 and
x = £, continuity of deflection, slope, curvature and transverse force for x = x|, x = x, and x = x3 as well
as continuity of upper actuator displacement and upper actuator stress x = x,. The continuity condition
of transverse forces should take into account the presence of the shear stresses t*, 77, e.g. for x = x|, we
have

bt N b3 tob )
By 2w cal57) = By 12 waa(r) = 0 (5 (67) = T (x7) a7
and for x = x,
bt} tyb b3 b
By 3 Woee(%y) — b? (T05) = T () = By 3 W) — bTﬁ(x;)' (18)

Solutions should satisfy free edge conditions corresponding to the zero normal stresses at the ends of
piezoactuators, which can be written in the form

Ope(X1) = T (X)) = 0. (x3) = 0 (x;) = 0. (19)
Finally, full system of boundary and joint conditions have the form
w(0,7) = w(l, 1) =0, (20)
Wa(0,8) = w (6, 7) =0, (21)

W(va t) = W@‘ﬁ Z)a W(x;’ t) = W(xz+» t)7 W(x;a t) = W<x;a t)7 (22)



2194 A. Tylikowski | International Journal of Solids and Structures 38 (2001) 2189-2202

wa(xy 1) = walx 0, waleg, ) =wx(, 1), walxg,f) =w.(x,1), (23)
WX, 8) = woalx ), W, ) =waxy, ), walg, ) =walxg,?), (24)
T(x;,0)=T(x 1), T(x;,t)=T(5,1), T(x5,1)=T(x],1), (25)
€ (x 1) =€"(x3,1) =4, € (x,0) =€ (x;) =—4, (26)
up,(xy,1) = ug (x5, 1), € (xy,1) = (& ,1). (27)

4. Steady-state solution

Assuming a harmonic frequency excitation A = A, exp(iw?) steady-state response of dynamic equations
(9)—(11) and (13)—(15) are sought as harmonics with the same angular velocity

et (x, 1) et (x)
e (x,0) | = | e (x)| exp(iwt). (28)
ep(x,1) &p(x)

Substituting Eq. (28) into Egs. (9)—(11) and (13)-(15), we obtain the system of ordinary differential
equations solutions which have the form dependent on the section number.

Section 1
ab(x) = C] exp(klx) + C2 exp(—klx) + C3 exp(iklx) + C4 exp(—iklx), (29)
where
2
= 12pb§0 '
\/" Evt2
Section 2
12
Sb(x) = ZC,,OC(]C,,, w) exp(knx)ﬂ (30)
n=17
12
¢ (x) = Csexp(ksx) + Csexp(—ksx) + ZC,, exp(k,x), (31)
n=7
12
& (x) = Csexp(ksx) + Co exp(—ksx) — ZCn exp(kux), (32)
n=17
where
k5 = G — ka)z

litpeEpe  Epe

the wavenumbers k;, i = 7, ..., 12 satisfy the following algebraic equation:
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Ept? Epf2toe Gty ( Epty tettG
kél—zbEPetPe + k4 |:pp€ lbzp 0‘)2 - 2ts T + Epetpe - k2w2 ppe p2ts + prPetPe
. G
- pbwz (ppetpew2 - t> =0 (33)
and
E othots Poclpels
k -1 pepeskz_ pe”p! 2.
a(k, ®) e G ¢
Section 3
18
ep(x) = Y _Cyt(ky, ) exp(kyx), (34)
n=13
18
et (x) = _Cyexp(kyx), (35)
n=13
where the wavenumbers k;, i = 13, ..., 18 satisfy the following algebraic equation:
Eput} Entit Gty [ Ept toely G
6 =blp 4 biplpe 2 b b’b 2 2 elb *
k FEpetPe"‘k |:ppe 12p W = 4, (T+Epetpe):| —kow (ppep4_ts+prpetpe>
; G
- pbe (ppetpew2 - t_) =0. (36)
Section 4
Sb(x) = Clg exp(klx) + Cz() exp(—klx) + C21 exp(iklx) + C22 exp(—iklx). (37)
The 22 unknown coefficients Cy, C,, .. ., Cy are determined by the boundary and joint conditions described

by Egs. (20)—(27).

5. Results

Numerical calculations based on the formulae presented in the previous sections are performed for a
wide range of angular frequency and A = 0.0001. More precisely, w = 0.1 s~! for the static loading, in the
first beam resonance region o = 206 s~!, and for a high frequency w = 1850 s~!. The dimensions of the
steel beam are / = 380 mm, width b = 40 mm and thickness #, = 2 mm. The piezoelectric actuators are
located between x; = 0.079 m and x; = 0.117 m. The remaining dimensions are width » = 40 mm and
thickness f,. = 0.6 mm. The center of the piezoelectrics is located at x = 98 mm. The parameters of the
beam and piezoelectric elements used in calculations are listed in Table 1. The mass per unit area ratio of
the piezoelement and the beam is equal to 0.55. As there are no precise data available relating the Kirchhoff
modulus G of bonding layer, and the bonding layer thickness ¢ calculations are performed for the following
values of parameter G/t; = 10'°, 10! 10'? corresponding to the soft, the intermediate and the stiff bonding,
respectively. The main parameter is the relative length of delamination, where 0 corresponds to the no
delamination. The dynamic characteristics are calculated for the four values of relative length of delam-
ination of the lower actuator 0, 0.25, 0.5, and 0.75.

Figs. 4 and 5 show the beam responses to a cyclic piezoelectric strains applied to both piezoelectric
actuators bonded to the beam in x = 0.1 m and x = 0.34 m, respectively. The magnitude of the transfer
functions decreases as the delamination length increases. It is seen from details in Figs. 6 and 7 that the
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Table 1
Material parameters used in calculations
Material Beam-steel Actuator-PZTG-1195
p (kgm™) 7800 7275
E (Nm™2) 21.6 x 10'° 63 x 10°
¢t (m) 0.002 0.0006
dy; (mV~) - 1.9 x 10710

presence of delamination does not significantly decreases the first natural frequency. Figs. 8-10 show that
the effect of delamination length does not change qualitatively the spatial distribution of beam displacement
in the first resonance region as the bonding layer parameter G/ increases. It is observed that the del-

20Ine G/t;=10"" N/m>
=

-4 te = 0.6 mm

x=0.1 m

250 500 750 1000 1250 1500 1750

Fig. 4. Near field beam longitudinal response ¢, at x = 0.1 m.

201In e G/t;=10'! N/m?
-4 te = 0.6 mm
-6 x=0.34 m
-8
-10
-12 0.75

250 500 750 1000 1250 1500 1750

Fig. 5. Far field beam longitudinal response ¢, at x = 0.34 m.
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20In ¢,

202.2 202t 202.6(202.8 203 203.2 203.4
2 ;' 0 G/ty=10" N/m®
_4 te = 0.6 mm

x=0.1 m

Fig. 6. Details of near field beam transverse response ¢, at x = 0.1 m in the first beam resonance.

20In¢p

202.2 202.4 202.6 202.8 203 203.2 203.4
0 G/t,=10" N/m3
te = 0.6 mm

x=0.34 m

Fig. 7. Details of far field beam transverse response ¢, at x = 0.34 m in the first beam resonance.

G/t;=10'" N/m>
0.0008 0 w =206 1/s
te = 0.6 mm
0.0006

0.0004
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0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fig. 8. Influence of relative delamination length on spatial beam displacement for soft bonding layer G/, = 10'° Nm~.
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W
0.008 G/t,=10"1 N/m3
0 =206 1/s
0.006 ¢ 0.25 t. = 0.6 mm
0.004 0.5
0.75
0.002

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fig. 9. Influence of relative delamination length on spatial beam displacement for intermediate bonding layer G/t, = 10'! Nm=3.

G/t;=10"? N/m3
0.04 w =206 1/s
te = 0.6 mm

0.03 0.25
0.02 | 0.5
0.01 0.75

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fig. 10. Influence of relative delamination length on spatial beam displacement for stiff bonding layer G/t = 10'> Nm™.

amination decreases piezoactuator coupling performance independently of the bonding layer stiffness. It is
seen that if the bonding layer parameter is increased the beam deflection increases. But the increase is more
pronounced at small values of G/f;,. Comparison of Figs. 9, 11, and 12 show different spatial responses for
different excitation frequencies. Fig. 11 shows the beam deflection at @ = 0.1 s~! corresponding to a very
slow excitation (static loading). As the inertia forces are negligible and there are no external forces in the
first and fourth sections, the curvature is equal to zero and displacements are represented by straight lines.
Due to the shear stresses in the second and the third section we have a curve with the nonzero curvature.

Integrating strains ¢*, ¢, &, with respect to x and using formulae (5) and (6) yield the shear stresses in the
bonding layers.

Section 2 (x; < x < x3)

S

ot :tg <(C5 exp(ksx) — Cexp( — ksx)) /ks + Zi—: (1 = alk,, ®)) exp(k,,x)), (38)
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W
0.0003 G/t;=10'! N/m?
0.00025 0 w=01 1/s
0.0002 0.25 . = 0.6 mm
0.00015 S
0.0001 | 0.75
0.00005

0.05 0.1 0.15 0.2 0.25 03 0.35

Fig. 11. Influence of relative delamination length on spatial beam displacement for quasistatic excitation w = 0.1 s7!.

W
G/t,=10"1 N/m3
0.0025 It /
w=1850 1/s
0002 ¢ _06mm O
0.0015 0.25
0.001 | 0.5
0.0005 | 0.75

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fig. 12. Influence of relative delamination length on spatial beam displacement for high frequency excitation o = 1850 s~'.

G 12 Cn
o ¢ <( — Csexpl(ksx) + Csexp( — ksx)) /ks + Zk_(l — a(k,, w)) exp(k,,x)>. (39)
s n=7 """
Section 3 (x < x < x3)
G 18 Cn
‘C+ :t_s;k_n(l —O((kmw)) exp(kn,x), (40)
- (41)

Figs. 13 and 14 show the distributions of shear along the second and third sections as functions of x and
the bonding layer parameter. The shear stress calculated according to present theory (Egs. (30)—(41)) can be
compared with the static shear stress for bonded piezoactuators without delamination (Crawley and de
Luis, 1987) denoted by a dashed curve. The present dynamic analysis and the static one are in a qualitative
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agreement. The shear stresses are antisymmetric with respect to the center of piezoelectric actuator. But the
absolute values of the dynamic shear stresses are larger. For large G/ the stress distribution gathers in the
regions close to the piezoactuator ends and converges to the distribution described by a linear form of the &-
Dirac functions concentrated at the piezoelement ends (Bailey and Hubbard, 1985). Comparison of the
shear stresses for slowly varying excitations o = 0.1 s™! calculated according to the present dynamical
approach (continuous line) and the static model of Crawley and de Luis (1987) (dashed line) shows a good
agreement (Fig. 15). The spatial dynamic stress distributions in the upper bonding layer and in the lower
bonding layer are shown in Figs. 13 and 14, respectively. It is seen that the delamination qualitatively
changes the stress distribution in the delamination region decreasing the performance of the lower pie-
zoactuator. Despite the zero shear stresses in the third section of lower layer the increase of the shear
stresses in the upper perfectly bonding layer is not observed. The presented results, however still wait for
experimental verifications.

1.5x 10’
1x10’
5x10°

G/t;=10'? N/m?

w =206 1/s

te = 0.6 mm X
0.08 0.09 0.1 0.11 0.12

Fig. 13. Shear stress distribution in the upper bonding layer (no delamination) at w = 206 s~!.

-5x10°
-1x107

1.5x10’
1x107
5x10°

G/t;=10'* N/m?
=206 1/s

te = 0.6 mm
0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115

Fig. 14. Shear stress distribution in the lower bonding layer (delamination) at w = 206 s~!.

-5x10°
—-1x107 }
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‘T+
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G/t;=10'2 N/m3
w=0.1 1/s

t. = 0.6 mm

0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115

Fig. 15. Comparison of shear stress distributions in the upper bonding layer for low frequency excitation w = 0.1 s7'.

-2x10°

—-4x10°

6. Conclusions

A dynamic model has been developed which is able to predict the response of a beam driven by the
piezoelectric actuators glued to lower and upper beam surfaces. The actuators are driven by a pair of
electrical fields with the same amplitude and in opposite phase. The actuators were used to excite steady-
state harmonic vibrations in the beam. The results obtained from this analysis are compared with particular
cases from past studies, which were based on the assumption of static coupling between the actuator and
the beam. The numerical tests performed for the simply supported beam with surface bonded actuators
show the influence of the delamination on the vibration characteristics. The increase of edge delamination
decreases the magnitude of transfer functions between the applied voltage to the piezoactuators and the
displacement of a fixed point of beam, and the shear stresses in the bonding layer, and the surface beam
strains. The presented analytical model is a handy tool to the fast introductory obtaining of different dy-
namical characteristics of controlled structures with piezoactuators. The results can be applied to at least
qualitative evaluation of the delamination harmful effect on piezoactuator coupling performance.
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